!50 point question! Find x and explain how you found it!

Answer:
[tex]\sf x = 60^{\circ \:}[/tex]
given:
using cosine rule:
[tex]\hookrightarrow \sf cos(x) = \dfrac{adjacent}{hypotense}[/tex]
[tex]\hookrightarrow \sf \sf cos(x) = \dfrac{10}{20}[/tex]
[tex]\hookrightarrow \sf \sf x = cos^{-1}(\dfrac{10}{20} )[/tex]
[tex]\hookrightarrow \sf \sf x = 60^{\circ \:}[/tex]
Answer:
x = 60°
Step-by-step explanation:
Trigonometric ratios
[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]
where:
As we have been given the hypotenuse and the side adjacent the angle, we can use the cosine trig ratio.
Given:
Substitute the given values into the cosine trig ratio and solve for x:
[tex]\implies \sf \cos(x^{\circ})=\dfrac{10}{20}[/tex]
[tex]\implies \sf \cos(x^{\circ})=\dfrac{1}{2}[/tex]
[tex]\implies \sf x=\cos^{-1} \left(\dfrac{1}{2}\right)[/tex]
[tex]\implies \sf x=60^{\circ}[/tex]
Learn more about trigonometric ratios here:
https://brainly.com/question/27938163
https://brainly.com/question/26861422