Respuesta :

Answer:

[tex]\sf x = 60^{\circ \:}[/tex]

given:

  • adjacent side:  10
  • hypotenuse side: 20

using cosine rule:

[tex]\hookrightarrow \sf cos(x) = \dfrac{adjacent}{hypotense}[/tex]

[tex]\hookrightarrow \sf \sf cos(x) = \dfrac{10}{20}[/tex]

[tex]\hookrightarrow \sf \sf x = cos^{-1}(\dfrac{10}{20} )[/tex]

[tex]\hookrightarrow \sf \sf x = 60^{\circ \:}[/tex]

Answer:

x = 60°

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

As we have been given the hypotenuse and the side adjacent the angle, we can use the cosine trig ratio.

Given:

  • [tex]\theta[/tex] = x
  • A = 10
  • H = 20

Substitute the given values into the cosine trig ratio and solve for x:

[tex]\implies \sf \cos(x^{\circ})=\dfrac{10}{20}[/tex]

[tex]\implies \sf \cos(x^{\circ})=\dfrac{1}{2}[/tex]

[tex]\implies \sf x=\cos^{-1} \left(\dfrac{1}{2}\right)[/tex]

[tex]\implies \sf x=60^{\circ}[/tex]

Learn more about trigonometric ratios here:

https://brainly.com/question/27938163

https://brainly.com/question/26861422