Respuesta :
Formula for permutation is:
[tex] \boxed{ \tt^{n} C_{r} = \frac{n!}{r!(n - r)!} }[/tex]
Calculation,
Plug in the values:
Required number of ways = ²C7
- n = 7
- r = 5
[tex] \sf \frac{7!}{5!(7 - 5)!} [/tex]
[tex] \sf \frac{7 \times 6 \times \cancel{5!}}{ \cancel{5! }\times 2!} [/tex]
[tex] \sf \frac{7 \times 6 }{ 2!} [/tex]
[tex] \sf \frac{42 }{ 2!} [/tex]
[tex] \sf \frac{42 }{ 2} = 21[/tex]
Thus, The players can be selected in 21 different ways!!~
Here one player cannot be repeated so repeating is not allowed.
- Hence we use combination here
- n=7
- r=5
Total ways
[tex]\\ \rm\hookrightarrow ^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
- Put values
[tex]\\ \rm\hookrightarrow ^7C_5[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{7!}{5!(7-5)!}[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{7!}{5!2!}[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{7\times 6\times 5!}{5!(2)}[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{7(6)}{2}[/tex]
[tex]\\ \rm\hookrightarrow \dfrac{42}{2}[/tex]
[tex]\\ \rm\hookrightarrow 21ways[/tex]