Compare the gravitational acceleration on the following objects compared to the Sun using:
g(star)/g(Sun) =(M(star)/M(Sun) )/〖(R(star)/R(Sun) )〗^2

Object M(star)/M(Sun) R(star)/R(Sun) g(star)/g(Sun)
White dwarf
Neutron star
Star Betelgeuse

Respuesta :

The gravitational acceleration of White dwarf compared to Sun is 13,675.86.

The gravitational acceleration of Neutron star compared to Sun is 6.79 x 10⁻²⁴.

The gravitational acceleration of Star Betelgeuse compared to Sun is 8.5 x 10¹⁰.

Mass of the planets

Mass of sun = 2 x 10³⁰ kg

Mass of white dwarf = 2.765  x 10³⁰ kg

Mass of Neutron star = 5.5 x 10¹² kg

Mass of star Betelgeuse = 2.188 x 10³¹ kg

Radius of the planets

Radius of sun = 696,340 km

Radius of white dwarf = 7000 km

Radius of Neutron star = 11 km

Radius of star Betelgeuse = 617.1 x 10⁶ km

Gravitational acceleration of White dwarf compared to Sun

[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.765 \times 10^{30}}{2\times 10^{30}} \times [\frac{696,340,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 13,675.86[/tex]

Gravitational acceleration of Neutron star compared to Sun

[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{5.5 \times 10^{12}}{2\times 10^{30}} \times [\frac{11,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 6.79\times 10^{-24}[/tex]

Gravitational acceleration of Star Betelgeuse compared to Sun

[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.188 \times 10^{31}}{2\times 10^{30}} \times [\frac{617.1 \times 10^9}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 8.5\times 10 ^{10}[/tex]

Learn more about acceleration due to gravity here: https://brainly.com/question/88039