Respuesta :
The gravitational acceleration of White dwarf compared to Sun is 13,675.86.
The gravitational acceleration of Neutron star compared to Sun is 6.79 x 10⁻²⁴.
The gravitational acceleration of Star Betelgeuse compared to Sun is 8.5 x 10¹⁰.
Mass of the planets
Mass of sun = 2 x 10³⁰ kg
Mass of white dwarf = 2.765 x 10³⁰ kg
Mass of Neutron star = 5.5 x 10¹² kg
Mass of star Betelgeuse = 2.188 x 10³¹ kg
Radius of the planets
Radius of sun = 696,340 km
Radius of white dwarf = 7000 km
Radius of Neutron star = 11 km
Radius of star Betelgeuse = 617.1 x 10⁶ km
Gravitational acceleration of White dwarf compared to Sun
[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.765 \times 10^{30}}{2\times 10^{30}} \times [\frac{696,340,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 13,675.86[/tex]
Gravitational acceleration of Neutron star compared to Sun
[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{5.5 \times 10^{12}}{2\times 10^{30}} \times [\frac{11,000}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 6.79\times 10^{-24}[/tex]
Gravitational acceleration of Star Betelgeuse compared to Sun
[tex]\frac{g(star)}{g(sun)} = \frac{M(star)}{M(sun)} \times [\frac{R(sun)}{R(star)} ]^2\\\\\frac{g(star)}{g(sun)} = \frac{2.188 \times 10^{31}}{2\times 10^{30}} \times [\frac{617.1 \times 10^9}{7,000,000} ]^2\\\\\frac{g(star)}{g(sun)} = 8.5\times 10 ^{10}[/tex]
Learn more about acceleration due to gravity here: https://brainly.com/question/88039