Write the slope intercept form of the equation of the line through the given points.

Answer:
[tex]y=-3x+-5[/tex]
Step-by-step explanation:
Given the following question:
Point A = (-3, 4) = (x1, y1)
Point B = (0, -5) = (x2, y2)
To find the slope intercept of a line we must first find the slope, using the formula for slope or rise over run.
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
[tex]m=\frac{-5-4}{0--3} =\frac{-9}{3}[/tex]
[tex]\frac{-9}{3} \div3=\frac{-3}{1} =-3[/tex]
[tex]m=-3[/tex]
Now to find the slope intercept of a line, we must use the formula to find the slope intercept and solve for b.
[tex]y=mx+b[/tex]
[tex]m=-3[/tex]
[tex]y=4[/tex]
[tex]x=-3[/tex]
[tex]4=-3(-3)+b[/tex]
Solve for b:
[tex]4=-3(-3)+b[/tex]
[tex]-3\times-3=9[/tex]
[tex]4=9+b[/tex]
[tex]9-9=0[/tex]
[tex]4-9=-5[/tex]
[tex]b=-5[/tex]
[tex]y=-3x+-5[/tex]
The slope intercept of the line is "y = -3x +-5."
Hope this helps.