Answer:
[tex]\bold{Cubic \: eq {}^{n} = x {}^{3} - ( \alpha + \beta + \gamma )x + ( \alpha \beta + \beta \gamma + \gamma \alpha )x - ( \alpha \beta \gamma )} \\ [/tex]
Sum of zeroes ,
[tex] \alpha + \beta + \gamma = ( - 3) + 4 + 6 = 7[/tex]
sum of product of zeroes taken two at a time ,
[tex] \alpha \beta + \beta \gamma + \gamma \alpha = ( - 3)(4) + (4)(6) + (6)( - 3) \\ = > - 12 + 24 - 18 \\ = > - 6[/tex]
product of zeroes ,
[tex] \alpha \beta \gamma = ( - 3)(4)(6) = - 72[/tex]
Substituting the values in the equation above , we get
[tex]\bold{x {}^{3} - ( \alpha + \beta + \gamma )x {}^{2} + ( \alpha \beta + \beta \gamma + \gamma \alpha )x - ( \alpha \beta \gamma ) }\\\\\bold{ ⇢ x {}^{3} - 7x {}^{2} + ( - 6)x - ( - 72)} \\\\\bold\blue{ ⇢x {}^{3} - 7x {}^{2} - 6x + 72}[/tex]
hope helpful~