Respuesta :

Answer:

[tex]a_{n}[/tex] = - 4n - 10

Step-by-step explanation:

the nth term of an arithmetic sequence is

[tex]a_{n}[/tex] = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

given a₈ = - 42 and a₁₆ = - 74 , then

a₁ + 7d = - 42 → (1)

a₁ + 15d = - 74 → (2)

subtract (1) from (2) term by term to eliminate a₁

8d = - 74 - (- 42) = - 74 + 42 = - 32 ( divide both sides by 8 )

d = - 4

substitute d = - 4 into (1) and solve for a₁

a₁ + 7(- 4) = - 42

a₁ - 28 = - 42 ( add 28 to both sides )

a₁ = - 14

Then

[tex]a_{n}[/tex] = - 14 - 4(n - 1) = - 14 - 4n + 4 = - 4n - 10

Answer:

[tex]a_{n}=-10-4n[/tex]

Step-by-step explanation

[tex]a_{n}=a_{1}+(n-1)d\\Given:a_{8}=-42\\&a_{16}=-74\\Hence: \\a_{8}=a_{1}+7d=-42 (1)a_{16}=a_{1}+15d=-74 (2)\\ \left \{ {{a_{1}+7d=-42} \atop a_{1}+15=-74}} \right. \\(2)-(1):8d=-32\\ d=-32/8 =-4\\Substitute :d=-4 in equation (1)"\\-42=a_{1}+7(-4)\\-42=a_{1}-28\\a_{1}=-14\\Hence:\\a_{n}=-14-(n-1)4\\a_{n}=-14-4n+4\\a_{n}=-10-4n[/tex]