Respuesta :

Answer:

x² + (y - 2)² = 41

Step-by-step explanation:

the equation of a circle in standard form is

(x - h )² + (y - k)² = r²

where (h, k ) are the coordinates of the centre and r is the radius

The distance from the centre to a point on the circle is the radius r

calculate r using the distance formula

r = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = (0, 2 ) and (x₂, y₂ ) = (5, - 2 )

r = [tex]\sqrt{(5-0)^2+(-2-2)^2}[/tex]

  = [tex]\sqrt{5^2+(-4)^2}[/tex]

  = [tex]\sqrt{25+16}[/tex]

  = [tex]\sqrt{41}[/tex] , then r² = ([tex]\sqrt{41}[/tex] )² = 41

then

(x - 0)² + (y - 2)² = 41 , that is

x² + (y - 2)² = 41 ← equation of circle