Respuesta :

Answer:

Step-by-step explanation:

2x + 3y = 2

x = 2 - 3y /2

x + y = 0

substitute the value of x

[tex]\frac{2 \\- 3y}{2}[/tex] + y = 0

2 - 3y + 2y = 0

2 = y

again,substitute the value of y

x = 2 - 3y / 2

=2 - 3*2 / 2

=2 - 6 / 2

=-2

Answer:

x = 2, y = -2

Step-by-step explanation:

This is an alternate way. You can also solve simultaneous equations using matrices. First, rewrite the simultaneous equations in matrix form.

[tex]\displaystyle \large{\left[\begin{array}{ccc}2&3\\1&1\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}2\\0\end{array}\right]}[/tex]

Let:

[tex]\displaystyle \large{A= \left[\begin{array}{ccc}2&3\\1&1\end{array}\right]}\\\displaystyle \large{X = \left[\begin{array}{ccc}x\\y\end{array}\right]}\\\displaystyle \large{B =\left[\begin{array}{ccc}2\\0\end{array}\right]}[/tex]

So now we have [tex]\displaystyle \large{AX = B}[/tex] and we have to solve for X which:

[tex]\displaystyle \large{A^{-1}AX = A^{-1}B}\\\displaystyle \large{X = A^{-1} B}[/tex]

Where:

[tex]\displaystyle \large{A^{-1}=\frac{1}{ad-bc}\left[\begin{array}{ccc}d&-b\\-c&a\end{array}\right]}[/tex]

**ad-bc is determinant of 2*2 matrices and shortened as det(var) or |var|**

Therefore, from A:

  • a = 2
  • b = 3
  • c = 1
  • d = 1

Find detA:

[tex]\displaystyle \large{\det A = |A| = ad-bc = 2(1)-3(1) = 2-3 = -1}[/tex]

Therefore, detA = -1. Hence:

[tex]\displaystyle \large{A^{-1}=-1\left[\begin{array}{ccc}1&-3\\-1&2\end{array}\right]}[/tex]

And [tex]\displaystyle \large{X = A^{-1}B}[/tex]:

[tex]\displaystyle \large{X = -1\left[\begin{array}{ccc}1&-3\\-1&2\end{array}\right] \left[\begin{array}{ccc}2\\0\end{array}\right] }[/tex]

Evaluate the matrices:

[tex]\displaystyle \large{X = -1\left[\begin{array}{ccc}1 \cdot 2-3 \cdot 0\\-1 \cdot 2+2\cdot 0\end{array}\right] }\\\displaystyle \large{X = -1\left[\begin{array}{ccc}2-0\\-2+0\end{array}\right] }\\\displaystyle \large{X = -1\left[\begin{array}{ccc}2\\-2\end{array}\right] }\\\displaystyle \large{X = \left[\begin{array}{ccc}-2\\2\end{array}\right] }\\\displaystyle \large{\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}-2\\2\end{array}\right] }[/tex]

Therefore, x = -2 and y = 2.