Respuesta :
Answer:
28 cm, 32cm , 36cm
Step-by-step explanation:
Given:
- The lengths of the sides of a triangle are in the ratio 7:8:9
- Perimeter of triangle is 96cm
To Find:
- The lengths of the sides of triangle?
Solution:
Let:
- 1st side = 7x
- 2nd side = 8x
- 3rd side = 9x
As, we know that,
★ Perimeter of Triangle = Sum of all sides ★
➝ 7x + 8x + 9x = 96cm
➝ 24x = 96cm
➮ x = 96/24
➮ x = 4
So, length of the sides are:
7x = 7 × 4 ➝ 28cm
8x = 8 × 4 ➝ 32cm
9x = 9 × 4 ➝ 36cm
Given :
- The length of the sides of the triangle are in the ratio 7:8:9 .
- The Perimeter of the Triangle is 96 cm.
To Find :
- The length of the sides of the triangle.
Solution :
Let us assume the sides be 7x cm, 8x cm and 9x cm.
We know,
[tex]\qquad{ \bold{ \pmb{Sum \: of \: all \: sides \: of \: the \: triangle = Perimeter_{(Triangle)}}}}
[/tex]
So, Substituting the values :
[tex]\qquad { \dashrightarrow{ \sf{7x + 8x + 9x = 96}}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{24x= 96}}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ \dfrac{24x}{24} = \dfrac{96}{24} }}}[/tex]
[tex]\qquad { \dashrightarrow{ \bf{ x = 4 }}}[/tex]
Therefore,
The length of the sides of the triangle are :
[tex]\qquad { \dashrightarrow{ \sf{ 7x \: cm= 7 \times 4 \: cm = \bf \: 28 \: cm }}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ 8x \: cm= 8 \times 4 \: cm = \bf \: 32 \: cm }}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ 9x \: cm= 9 \times 4 \: cm = \bf \: 36 \: cm }}}[/tex]