Respuesta :

[tex]\qquad \qquad\huge \underline{\boxed{\sf Answer}}[/tex]

The shown pair of angles are Co interior angle pair, therefore the sum of those angles is 180°

[tex]\qquad \sf  \dashrightarrow \: 130 \degree + 7x + 1 \degree = 180 \degree[/tex]

[tex]\qquad \sf  \dashrightarrow \: 131 \degree + 7x = 180 \degree[/tex]

[tex]\qquad \sf  \dashrightarrow \: 7x= 180 \degree - 131 \degree[/tex]

[tex]\qquad \sf  \dashrightarrow \: 7x= 49 \degree [/tex]

[tex]\qquad \sf  \dashrightarrow \: x=49 \degree \div 7[/tex]

[tex]\qquad \sf  \dashrightarrow \: x=7 \degree [/tex]

The required value of x is 7°

Answer :-

  • X = 7

Solution :-

If a ray stands on a line, then the sum of two adjacent angles so formed is 180 .

  • 7x + 1 + 130 = 180
  • 7x + 131 = 180
  • 7x = 180 - 131
  • 7x = 49
  • x = 49/ 7
  • x = 7

Hope it helps ~