Answer:
x=2
Step-by-step explanation:
The minimum value of the function would be its vertex, where the x-coordinate is defined as [tex]x=-\frac{b}{2a}[/tex] in the form of [tex]ax^2+bx+c=0[/tex], so we expand the function first:
[tex]f(x)=(x-2)^2+4\\\\f(x)=x^2-4x+4+4\\\\f(x)=x^2-4x+8[/tex]
This is now in the form of [tex]ax^2+bx+c=0[/tex] and we use our rule:
[tex]x=-\frac{b}{2a}\\ \\x=-\frac{-4}{2(1)}\\ \\x=-\frac{-4}{2}\\ \\x=-(-2)\\\\x=2[/tex]
Thus, the minimum value of the function occurs when x=2