Respuesta :

Answer:

Step-by-step explanation:

3y - 2x +2 = 0

3y = 2x - 2

[tex]y = \dfrac{2}{3}x-\dfrac{2}{3}[/tex]

y = mx + b

Slope of line a = 2/3

Product of slope of perpendicular line = -1

[tex]Slope \ of \ line \ b = \dfrac{-1}{\dfrac{2}{3}}=\dfrac{-3}{2}[/tex]

Equation of line b:

[tex]y=\dfrac{-3}{2}x+b[/tex]

Line b passes through (4,7)

[tex]7 = \dfrac{-3}{2}*4+b\\\\\\7= -6 + b\\\\b = 7 + 6\\\\b = 13[/tex]

Equation of line b:

[tex]y=\dfrac{-3}{2}x+13[/tex]

Multiply the  equation by 2

2y = -3x + 26

3x + 2y - 26 = 0