Answer: [tex]y=\frac{3}{17}x-13[/tex]
Step-by-step explanation:
Find the slope of the line between (-17, -16) and (0,-13) using [tex]m=\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex], the change of y over the change of x
[tex]m=\frac{3}{17}[/tex]
Use the slope and a given point to substitute for [tex]x_{1}[/tex] and [tex]y_{1}[/tex] in the point-slope form [tex]y-y_{1} =m(x-x_{1} )[/tex].
[tex]y-(-16)=\frac{3}{17}(x+17)[/tex]
Solve for y and rewrite into [tex]y=mx+b[/tex]
[tex]y=\frac{3}{17}x-13[/tex]