Respuesta :

Space

Answer:

[tex]\displaystyle f'(x) = \frac{4}{x^2}[/tex]

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

The definition of a derivative is the slope of the tangent line:                             [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle f(x) = -\frac{4}{x}[/tex]

Step 2: Differentiate

  1. [Function] Substitute in x:                                                                            [tex]\displaystyle f(x + h) = -\frac{4}{x + h}[/tex]
  2. Substitute in functions [Definition of a Derivative]:                                   [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{-\frac{4}{x + h} - \big( -\frac{4}{x} \big)}{h}[/tex]
  3. Simplify:                                                                                                        [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{4}{x(x+ h)}[/tex]
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                          [tex]\displaystyle f'(x) = \frac{4}{x(x+ 0)}[/tex]
  5. Simplify:                                                                                                        [tex]\displaystyle f'(x) = \frac{4}{x^2}[/tex]

∴ the derivative of the given function will be equal to 4 divided by x².

---

Learn more about derivatives: https://brainly.com/question/25804880

Learn more about calculus: https://brainly.com/question/23558817

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation