Respuesta :

The table of values for the functions f(x) = x^2 + 1, g(x) = f(x - 5) and h(x) = f(x+3) is:

[tex]\left[\begin{array}{cccccc}x&f(x)&x&g(x)&x&h(x)\\-2&5&-2&50&-2&2\\-1&2&-1&37&-1&5&0&1&0&26&0&10&1&2&1&17&1&17&2&5&2&10&2&26\end{array}\right][/tex]

How to set up the table

The equations of the functions are given as:

[tex]f(x) = x^2 + 1[/tex]

[tex]g(x) = f(x - 5)[/tex]

[tex]h(x) = f(x+3)[/tex]

For function f(x), we have:

f(-2) = (-2)^2 + 1 = 5

f(-1) = (-1)^2 + 1 = 2

f(0) = (0)^2 + 1 = 1

f(1) = (1)^2 + 1 = 2

f(2) = (2)^2 + 1 = 5

For function g(x), we have:

g(-2) = f(-2 - 5) = f(-7) =  (-7)^2 + 1 = 50

g(-1) = f(-1 - 5) = f(-6) =  (-6)^2 + 1 = 37

g(0) = f(0 - 5) = f(-5) =  (-5)^2 + 1 = 26

g(1) = f(1 - 5) = f(-4) =  (-4)^2 + 1 = 17

g(2) = f(2 - 5) = f(-3) =  (-3)^2 + 1 = 10

For function h(x), we have:

h(-2) = f(-2 + 3) = f(1) =  (1)^2 + 1 = 2

h(-1) = f(-1 + 3) = f(2) =  (2)^2 + 1 = 5

h(0) = f(0 + 3) = f(3) =  (3)^2 + 1 = 10

h(1) = f(1 + 3) = f(4) =  (4)^2 + 1 = 17

h(2) = f(2 + 3) = f(5) =  (5)^2 + 1 = 26

Substitute the above values in the blank table.

So, we have:

[tex]\left[\begin{array}{cccccc}x&f(x)&x&g(x)&x&h(x)\\-2&5&-2&50&-2&2\\-1&2&-1&37&-1&5&0&1&0&26&0&10&1&2&1&17&1&17&2&5&2&10&2&26\end{array}\right][/tex]

Read more about tables and functions at:

https://brainly.com/question/15602982