Respuesta :
Solution:
Note that:
- J = 10 + M
- J - 4 = 3(M - 4)
Finding Maggie's age:
- J - 4 = 3(M - 4)
- => J - 4 = 3M - 12
- => M + 10 - 4 = 3M - 12
- => M + 6 = 3M - 12
- => 12 + 6 = 3M - M
- => 18 = 2M
- => M = 9
Finding Justin's age:
- J = 10 + M
- => J = 10 + 9
- => J = 19
Let Justin's age be x
Let Maggie's age be y
ATQ,
[tex] \pmb {x = 10 + y} \\ \pmb{x-4=3(y-4)}[/tex]
Solve using the substitution method!!
- In this way the equation will be easier to solve because we will get the value of both x and y together...
[tex] \pmb{10 + y - 4 = 3(y - 4)}[/tex]
[tex] \sf 6 + y = 3y - 12[/tex]
[tex] \sf y - 3y =- 12 - 6[/tex]
[tex] \sf - 2y =- 18 [/tex]
[tex] \sf y =9[/tex]
Substitute the value of y into the first equation
[tex] \pmb{x= 10 + y} \\ \pmb{x = 10 + 9} \\ \pmb{x = 19}[/tex]
Thus, Maggie's age is 9 and Justin's age is 19...~