Given -
i.e, length = 2cm, breadth = 4cm and height = 6cm
i.e, side = 2cm
To find -
Concept -
To find the number of cubes Mavis can fit into the rectangular box we are supposed to divide the volume of rectangular box by the volume of the cube. But before doing that we should know the formulas to find the volume of both the 3D shapes. i.e,
Volume of Rectangular Box = l × b × h
Volume cube = a³
where,
Solution -
[tex]\bf{Number\:of\: cubes=\frac{Volume\:of\: Rectangular\:Box}{Volume\:of\:cube}}[/tex]
[tex]\rightarrow\sf{Number\:of\: cubes=\frac{l\times b\times h}{a\times a\times a}}[/tex]
[tex]\rightarrow\sf{Number\:of\: cubes=\frac{2\times 4\times 6}{2\times 2\times 2}}[/tex]
[tex]\rightarrow\sf{Number\:of\: cubes=\frac{\cancel{2}\times \cancel{4}^2\times \cancel{6}^3}{\cancel{2}\times \cancel{2}\times \cancel{2}}}[/tex]
[tex]\rightarrow\sf{Number\:of\: cubes=2\times3}[/tex]
[tex]\rightarrow\mathbf{Number\:of\: cubes=6\:boxes}[/tex]
Hence, the number of cubes that can be fit into the rectangular box is 6 cubes.