Given:
f(x)=x^2
g(x)=x-1
Find f(g(2))+g(f(-1))

Answer:
1
Step by step explanation:
[tex]\text{Given that,} ~ f(x) = x^2~ \text{and}~ g(x) = x-1\\\\g(2) = 2-1 = 1\\\\g(f(-1)) = g(1) = 1-1 = 0\\\\f(g(2) + g(f(-1)))= f(1+0) = f(1) = 1^2 =1[/tex]
Answer:
g(2) = 2 - 1 = 1 \\ f( -1 ) = { - 1}^{2} = 1 \\ f(1) + g(1) = \\ f(1) = {1}^{2} = 1 \\ g(1) = 1 - 1 = 0 \\
[tex]g(2) = 2 - 1 = 1 \\ f( -1 ) = { - 1}^{2} = 1 \\ f(1) + g(1) = \\ f(1) = {1}^{2} = 1 \\ g(1) = 1 - 1 = 0 \\ 1 + 0 = 1 \\ [/tex]