Respuesta :

Answer:

  • h(x) = f(x + 12) - 4

Step-by-step explanation:

According to the graph, the function h(x) is the translation of the function f(x) to the right and down.

Compare the coordinates of the vertices to write the formula

  • (- 6, 11) → (6, 7)
  • x = 6 - (-6) = 12
  • y = 7 - 11 = - 4

The formula is

  • h(x) = f(x + 12) - 4

Answer:

h(x) = f(x - 12) - 4

Step-by-step explanation:

The vertex is the turning point (stationary point or minima/maxima) of the graph.

To find the series of translations that transform the graph of y = f(x) onto y = h(x), compare the vertices of both graphs.

Vertices of given functions:

  • Vertex of f(x) = (-6, 11)
  • Vertex of h(x) = (6, 7)

Differences

  • x-values:  6 - (-6) = 12
  • y-values:  7 - 11 = -4

Therefore, y = f(x) has been:

  • translated 12 units right
  • translated 4 units down

Translations

For a > 0

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Therefore:

  • f(x) translated 12 units right = f(x - 12)
  • f(x - 12) translated 4 units down = f(x - 12) - 4

So the formula for h(x) in terms of f(x) is:

h(x) = f(x - 12) - 4

Learn more about transformations here:

brainly.com/question/27845947