What is the volume of this cone? use 3.14 for π and round your answer to the nearest tenth. in your answer, give the volume of the cone rounded to the nearest tenth, and then explain how you calculated it.

Respuesta :

aedua

Answer:

Volume of a cone = 1/3•pi r•r•h

V = 1/3•pi•2•2•8

V = 33.49333333333333

V = 33.5 inches squared

I hope this helps! Have a good day! :)

The volume of the considered cone whose heigth is 8 inches and radius of the base is 2 inches is 33.5 cubic inches approximately.

How to find volume of a right circular cone?

Suppose that the radius of considered right circular cone be 'r' units.

And let its height be 'h' units.

Then, its volume is given as:

[tex]V = \dfrac{1}{3} \pi r^2 h \: \rm unit^3[/tex]

Right circular cone is the cone in which the line joining peak of the cone to the center of the base of the circle is perpendicular to the surface of its base.

The missing image for this problem is attached below.

For this case, the radius is of 2 inches, and height is of 8 inches, thus, the volume of the considered cone is:

[tex]V = \dfrac{1}{3} \pi r^2 h \: \rm unit^3 \approx \dfrac{1}{3} \times 3.14 \times (2)^2 \times 8 \approx 33.51 \approx 33.5 \: \rm in^3[/tex]

(rounded to the nearest tenth, which is first place to right of the decimal point.

Thus, the volume of the considered cone whose heigth is 8 inches and radius of the base is 2 inches is 33.5 cubic inches approximately.

Learn more about volume of a cone here:

https://brainly.com/question/26093363

Ver imagen astha8579