find the missing side
1) 6
2) 6.41
3)6.40

Answer :
[tex] \\ [/tex]
Step-by-step explanation :
Here, A right angled triangle is given with the measure of two sides and we are to find the measure of the third side.
We'll find the measure of third side with the help of the Pythagorean theorem,
[tex]\\ {\longrightarrow \pmb{\sf {\qquad (Hypotenuse {)}^{2}= (Base) {}^{2} + (Perpendicular {)}^{2} }}} \\ \\[/tex]
Here,
[tex] \\ [/tex]
So, substituting the values in the formula we get :
[tex]\\ {\longrightarrow \pmb{\sf {\qquad (c {)}^{2}= (4) {}^{2} + (5 {)}^{2} }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (c {)}^{2}= 16 + 25 }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad (c {)}^{2}= 41 }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad c = \sqrt{41} }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\frak {\qquad c \approx 6.40 }}} \\ \\[/tex]
Therefore,
Step-by-step explanation:
As it is a right angle triangle , So
We have to find the value of hypotenuse i.e C
By Pythagoras theorem
H² = P² + B²
putting the known values ,
C² = 5² + 4²
C² = 41 units
C = √41 units
C = 6.40 units