Respuesta :

Answer:

52 cm

Step-by-step explanation:

Use the pythagorean theorem to solve for missing sides in a right triangle.

20²+48²= missing side

20²+48²=2704

Take the square root of 2704 to get the missing side.

[tex] \sqrt{2704 } = 52[/tex]

Answer :

  • 52 cm

Explanation :

  • This is Right Angled Triangle.

Solution :

We'll solve this using the Pythagorean Theorem.

where,

  • AB (20 cm) is the perpendicular

  • BC (48 cm) is the Base.

  • AC is the Hypotenuse.

We know that,

[tex]{\longrightarrow \bf \qquad (AC) {}^{2} = (AB) {}^{2} +( BC) {}^{2} } \\ \\ [/tex]

Now, we will substitute the given values in the formula :

[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = (20) {}^{2} +( 48) {}^{2} } \\ \\ [/tex]

We know that, (20)² = 400 and (48)² = 2304. So,

[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = 400 + 2304 } \\ \\ [/tex]

Now, adding 400 and 2304 we get :

[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = 2704 } \\ \\ [/tex]

Now, we'll take the square root of both sides to remove the square from AC :

[tex]{\longrightarrow \sf \qquad \sqrt{ (AC) {}^{2}} = \sqrt{2704} } \\ \\ [/tex]

When we take the square root of (AC)² , it becomes AC,

[tex]{\longrightarrow \sf \qquad AC = \sqrt{2704} } \\ \\ [/tex]

We know that, square root of 2704 is 52 .

[tex]{\longrightarrow \sf{\pmb{ \qquad AC = 52 }}} \\ \\ [/tex]

So,

  • The measure of the missing side (AC) is 52 cm .
Ver imagen Аноним