find the length of the missing side.
1) 52 cm
2) 42cm
3) 25 cm
4) 48 cm

Answer:
52 cm
Step-by-step explanation:
Use the pythagorean theorem to solve for missing sides in a right triangle.
20²+48²= missing side
20²+48²=2704
Take the square root of 2704 to get the missing side.
[tex] \sqrt{2704 } = 52[/tex]
Answer :
⠀
Explanation :
⠀
Solution :
We'll solve this using the Pythagorean Theorem.
where,
⠀
We know that,
[tex]{\longrightarrow \bf \qquad (AC) {}^{2} = (AB) {}^{2} +( BC) {}^{2} } \\ \\ [/tex]
Now, we will substitute the given values in the formula :
[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = (20) {}^{2} +( 48) {}^{2} } \\ \\ [/tex]
We know that, (20)² = 400 and (48)² = 2304. So,
[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = 400 + 2304 } \\ \\ [/tex]
Now, adding 400 and 2304 we get :
[tex]{\longrightarrow \sf \qquad (AC) {}^{2} = 2704 } \\ \\ [/tex]
Now, we'll take the square root of both sides to remove the square from AC :
[tex]{\longrightarrow \sf \qquad \sqrt{ (AC) {}^{2}} = \sqrt{2704} } \\ \\ [/tex]
When we take the square root of (AC)² , it becomes AC,
[tex]{\longrightarrow \sf \qquad AC = \sqrt{2704} } \\ \\ [/tex]
We know that, square root of 2704 is 52 .
[tex]{\longrightarrow \sf{\pmb{ \qquad AC = 52 }}} \\ \\ [/tex]
So,