Respuesta :

Given,

  • Diameter of the circle = 7 yd

  • Have to take the value of π as 3.14

[tex] \: [/tex]

To Find,

  • The area and the circumference of a circle.

[tex] \: [/tex]

Solution :

  • As, the diameter is 7 yd, therefore the radius will be 3.5 yd

First of all, we'll find the circumference of the circle :

[tex]\\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: \: Circumference_{(circle)} = 2 \pi r}}}}}} \: \: \bigstar \\ \\[/tex]

Now, we'll substitute the required values in the formula :

[tex]\\ { \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 2 \times 3.14 \times 3.5}}} \: \: \\ \\[/tex]

[tex] { \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 3.14 \times 7}}} \: \: \\ \\[/tex]

[tex] { \longrightarrow \qquad{ \sf{ \pmb{ \: Circumference_{(circle)} = 21.98}}}} \: \: \\ \\[/tex]

Therefore,

  • The circumference of the circle is 21.98 yd

[tex] \: [/tex]

Now, we'll find the area of the circle :

[tex]\\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: \: Area_{(circle)} = \pi r^2}}}}}} \: \: \bigstar \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times { \times (3.5)}^{2} }}}}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times { \times 3.5 \times 3.5 }}}}}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times 12 .25 }}}}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ {{\pmb { \sf{ \: \: Area_{(circle)} = 38.465 }}}}}} \: \: \\ \\[/tex]

Therefore,

  • The area of the circle is 38.46 yd² approximately