Respuesta :

5. Let [tex]x = \sin(\theta)[/tex]. Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

[tex]\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}[/tex]

and [tex]dx = \cos(\theta) \, d\theta[/tex]. So the integral transforms to

[tex]\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta[/tex]

Reduce the power by writing

[tex]\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))[/tex]

Now let [tex]y = \cos(\theta)[/tex], so that [tex]dy = -\sin(\theta) \, d\theta[/tex]. Then

[tex]\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C[/tex]

Replace the variable to get the antiderivative back in terms of x and we have

[tex]\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C[/tex]

[tex]\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C[/tex]

[tex]\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C[/tex]

[tex]\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}[/tex]

6. Let [tex]x = 3\tan(\theta)[/tex] and [tex]dx=3\sec^2(\theta)\,d\theta[/tex]. It follows that

[tex]\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}[/tex]

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

[tex]\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta[/tex]

The denominator reduces to

[tex]\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)[/tex]

and so

[tex]\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta[/tex]

Rewrite sin³(θ) just like before,

[tex]\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta[/tex]

and substitute [tex]y=\cos(\theta)[/tex] again to get

[tex]\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C[/tex]

Put everything back in terms of x :

[tex]\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C[/tex]

[tex]\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C[/tex]

[tex]\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}[/tex]

2(b). For some constants a, b, c, and d, we have

[tex]\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}[/tex]

3(a). For some constants a, b, and c,

[tex]\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}[/tex]

5(a). For some constants a-f,

[tex]\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}[/tex]

where we use the sum-of-5th-powers identity,

[tex]a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)[/tex]