Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]

As we know :

Length of arc = Radius × Angle made by Arc at center [ in radians ]

[tex]\qquad \tt \dashrightarrow \: arc = radius \times angle \: \: ( in \: \: rad)[/tex]

[tex]\qquad \tt \dashrightarrow \: arc = 4 \times \dfrac{3 \pi}{2} [/tex]

[tex]\qquad \tt \dashrightarrow \: arc = 6\pi \dfrac{ }{} \: \: units[/tex]

or

[tex]\qquad \tt \dashrightarrow \: arc = 6\times 3.14 = 18.84 \: \: units\dfrac{ }{} \: \: [/tex]

  • Angle=2π-π/2=3π/2
  • Radius=4

So

Arc length

  • L=r[tex]\theta[/tex]
  • L=4(3π/2)
  • L=2(3π)
  • L=6π
  • L=18.8units