SOMEONE HELP ME IM FREAKING OUT I LITERALLY CANT WITH THIS QUESTION IM PRAYING PLEASE HELP ME IM SO SERIOUS IM GONNA END IT PLS HELP ME the question is like 3-v BUT LIKE THE v has a line on top so its like 3-v32/1+v2 LIKE I DONT UNDERSTAND
can be written in the form a + bv2
where a and b are integers .

SOMEONE HELP ME IM FREAKING OUT I LITERALLY CANT WITH THIS QUESTION IM PRAYING PLEASE HELP ME IM SO SERIOUS IM GONNA END IT PLS HELP ME the question is like 3v class=

Respuesta :

Answer:

[tex]\sf -11+7\sqrt{2}[/tex]

Step-by-step explanation:

Given expression:

[tex]\sf \dfrac{3-\sqrt{32}}{1+\sqrt{2} }[/tex]

Rewrite 32 as 16 · 2:

[tex]\sf \implies \dfrac{3-\sqrt{16 \cdot 2}}{1+\sqrt{2} }[/tex]

Apply radical rule [tex]\sf \sqrt{a \cdot b}=\sqrt{a}\sqrt{b}[/tex]

[tex]\sf \implies \dfrac{3-\sqrt{16}\sqrt{2}}{1+\sqrt{2} }[/tex]

As [tex]\sf \sqrt{16}=4[/tex]:

[tex]\sf \implies \dfrac{3-4\sqrt{2}}{1+\sqrt{2} }[/tex]

Multiply by the conjugate:

[tex]\sf \implies \dfrac{3-4\sqrt{2}}{1+\sqrt{2} } \times \dfrac{1-\sqrt{2} }{1-\sqrt{2} }[/tex]

[tex]\sf \implies \dfrac{(3-4\sqrt{2})(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}[/tex]

[tex]\sf \implies \dfrac{3-3\sqrt{2}-4\sqrt{2}+4\sqrt{2}\sqrt{2}}{1-\sqrt{2}+\sqrt{2}-\sqrt{2}\sqrt{2}}[/tex]

As [tex]\sf \sqrt{2}\sqrt{2}=\sqrt{4}=2[/tex]:

[tex]\sf \implies \dfrac{3-3\sqrt{2}-4\sqrt{2}+4 \cdot 2}{1-\sqrt{2}+\sqrt{2}-2}[/tex]

[tex]\sf \implies \dfrac{3-7\sqrt{2}+8}{1-2}[/tex]

[tex]\sf \implies \dfrac{11-7\sqrt{2}}{-1}[/tex]

[tex]\sf \implies -11+7\sqrt{2}[/tex]