Question: If [tex]$f(x)=\cos \left[2 \tan ^{-1}\left(\sin \left(\cot ^{-1} \sqrt{\frac{1-x}{x}}\right)\right)\right]$[/tex]
Options:
[tex](a) $f^{\prime}(x)(x-1)^{2}-2(f(x))^{2}=0$\\\(b) $f^{\prime}(x)(x-1)^{2}+2(f(x))^{2}=0$\\(c) $f^{\prime}(x)(x+1)^{2}+2(f(x))^{2}=0$\\(d) $f^{\prime}(x)(x+1)^{2}-2(f(x))^{2}=0$[/tex]

Respuesta :

Note that √((1 - x)/x) is defined only as long as 0 < x ≤ 1.

Consider a right triangle with reference angle θ such that

[tex]\cot(\theta) = \sqrt{\dfrac{1-x}x}[/tex]

In other words, on an appropriate domain,

[tex]\theta = \cot^{-1}\left(\sqrt{\dfrac{1-x}x}\right)[/tex]

In such a triangle, you would find that

[tex]\sin(\theta) = \sqrt x[/tex]

so f(x) reduces a bit to

[tex]f(x) = \cos\left(2 \tan^{-1}(\sqrt x)\right)[/tex]

Now consider another triangle with reference angle ɸ such that

[tex]\tan(\phi) = \sqrt x \implies \phi = \tan^{-1}(\sqrt x)[/tex]

In this triangle, you would find

[tex]\cos(\phi) = \dfrac1{\sqrt{1+x}}[/tex]

Recalling the double angle identity for cosine, it follows that

[tex]f(x) = \cos(2\phi) = 2 \cos^2(\phi) - 1 = \dfrac{1-x}{1+x}[/tex]

Differentiating with respect to x yields

[tex]f'(x) = -\dfrac2{(1+x)^2}[/tex]

while

[tex]f(x)^2 = \dfrac{(1-x)^2}{(1+x)^2}[/tex]

It follows that

[tex]f'(x)(x-1)^2 - 2f(x)^2 = 0[/tex]

so B is the correct choice.