hmmm so let's see first how much is 10% of the earnings of 1470.
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{10\% of 1470}}{\left( \cfrac{10}{100} \right)1470}\implies 147[/tex]
so then
[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$147\\ r=rate\to 3.5\%\to \frac{3.5}{100}\dotfill &0.035\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\dotfill &12\\ t=years\dotfill &25 \end{cases}[/tex]
[tex]A=147\left(1+\frac{0.035}{12}\right)^{12\cdot 25}\implies A=147\left( \frac{2407}{2400} \right)^{300}\implies \boxed{A\approx 352.19}[/tex]