If you are given n=504n=504 and p=0.27p=0.27 for a binomial experiment, use the normal distribution to approximate P(x≤119)P(x≤119). Use continuity correction.

Respuesta :

Ankit

Answer:

[tex]X ≤ P(119)  \rightarrow    P(X < 119.5)[/tex]

Step-by-step explanation:

Given:

n = 504

p = 0.27

To Approximate:

P(x≤119) usimg normal distribution

Solution:

We know that,

[tex]p+q = 1\\q = 1-p\\q = 1 - 0.27 \\ \fbox{q = 0.73}[/tex]

let's find the mean,

[tex]n \cdot p = 500 \times 0.27 \\ n \cdot p = 135 \\ \mu \: = 135[/tex]

let's calculate standard deviation,

[tex] \sigma = \: \sqrt {n \cdot p\cdot q} \\ \sigma \: = \sqrt{504 \times 0.27 \times 0.73} \\ \sigma \: = 9.96[/tex]

Rewriting the equation using continuity correction,

[tex]    P(X ≤ n)  \rightarrow    P(X < n + 0.5) \\     P(X ≤ 119)  \rightarrow    P(X < 119 + 0.5) \\     P(X ≤ 119)  \rightarrow    P(X < 119.5) \\ \fbox{x \: = 119.5}[/tex]

Some more things you must need to know,

standard score is an important part of statistics,

can be derived using formula

[tex]Z = \frac{ x - \mu}{ \sigma} \\ Z = \frac{ 119.5 - 135}{ 9.96} \\ Z= \frac{-15.5}{9.96} \\ \fbox{Z= -1.55}[/tex]

Thanks for joining brainly community!