Respuesta :
Answer: Choice C
The fraction 1/16
In other words the "StartFraction 1 Over 16 EndFraction"
=============================================================
Work Shown:
[tex]\displaystyle L = \lim_{x \to -2}4^x\cos(\pi x)\\\\\\L = 4^{-2}\cos(\pi (-2))\\\\\\L = \frac{1}{4^2}\cos(-2\pi)\\\\\\L = \frac{1}{16}\cos(2\pi)\\\\\\L = \frac{1}{16}(1)\\\\\\L = \frac{1}{16}\\\\\\[/tex]
The limit of the function f(x)=[tex]4^{x}[/tex]cos(πx) is 1/16 which is start fraction 1 over 16 end fraction.
What is limit of function?
The limit is the extent to which the value of function exists.
How to find limit of function?
The function which is given is f(x)=[tex]4^{x}[/tex]cos(πx) and we have to find the limit of f(x).
L.H.L of f(x)
[tex]\lim_{x \to \-2} 4^{x}cos([/tex]πx)
Put x=-2-h
[tex]\lim_{h \to \0} 4^{-2-h}cos([/tex]π(-2-h)
put h=0
=[tex]4^{-2} cos(2[/tex]π)
=[tex]4^{-2}*1[/tex] {cos(2π)=1}
=1/16
R.H.L of f(x)
[tex]\lim_{x \to \-2} 4^{x}[/tex] cos(πx)
Put the value of x=-2+h
=[tex]\lim_{h \to \0}4^{-2+h}[/tex] cos{π(-2+h)}
Put the value of h=0
=[tex]4^{-2}*cos(2[/tex]π)
=1/16
L.H.L=R.H.L
Hence the limit of the function [tex]4^{x}cos([/tex]πx) is 1/16.
Learn more about limit at https://brainly.com/question/27517662
#SPJ2