Respuesta :

Answer:

p = 4

Step-by-step explanation:

Given equation:

[tex]x^2+(p-3)y^2-4x+6y-16=0[/tex]

Standard equation of a circle:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

(where [tex](a,b)[/tex] is the centre of the circle, and [tex]r[/tex] is the radius)

If you expand this equation, you will see that the coefficient of [tex]y^2[/tex] is always one.

Therefore, [tex]p-3=1[/tex]

[tex]\implies p=1+3=4[/tex]

Additional information

To rewrite the given equation in the standard form:

[tex]\implies x^2+y^2-4x+6y-16=0[/tex]

[tex]\implies x^2-4x+y^2+6y=16[/tex]

[tex]\implies (x-2)^2-4+(y+3)^2-9=16[/tex]

[tex]\implies (x-2)^2+(y+3)^2=16+4+9[/tex]

[tex]\implies (x-2)^2+(y+3)^2=29[/tex]

So this is a circle with centre (2, -3) and radius √29