Respuesta :

Answer:

Step-by-step explanation:

The perimeter of an equilateral triangle is:

P = 3a (where a any length of the triangle)

The area of an equilateral triangle is:

[tex]A = \frac{\sqrt{3} }{4} a^{2}[/tex] (where a is the side length)

Using the area formula we can rearrange it to get the formula of the length of the equilateral triangle:

[tex]a = \frac{2}{3} 3^{\frac{3}{4} } \sqrt{A}[/tex]

  • If side is s

Then three important formulas are

[tex]\\ \rm\Rrightarrow Perimeter=3s[/tex](As sides are equal)

[tex]\\ \rm\Rrightarrow Area=\dfrac{\sqrt{3}}{4}s^2[/tex]

[tex]\\ \rm\Rrightarrow Height=\dfrac{\sqrt{3}s}{2}[/tex]