Respuesta :
Answer:
Step-by-step explanation:
The perimeter of an equilateral triangle is:
P = 3a (where a any length of the triangle)
The area of an equilateral triangle is:
[tex]A = \frac{\sqrt{3} }{4} a^{2}[/tex] (where a is the side length)
Using the area formula we can rearrange it to get the formula of the length of the equilateral triangle:
[tex]a = \frac{2}{3} 3^{\frac{3}{4} } \sqrt{A}[/tex]
- If side is s
Then three important formulas are
[tex]\\ \rm\Rrightarrow Perimeter=3s[/tex](As sides are equal)
[tex]\\ \rm\Rrightarrow Area=\dfrac{\sqrt{3}}{4}s^2[/tex]
[tex]\\ \rm\Rrightarrow Height=\dfrac{\sqrt{3}s}{2}[/tex]