[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]
Let's solve ~
Circumference of a circle :
[tex]\qquad \tt \dashrightarrow \:2 \pi r[/tex]
And we have been given that Circumference = 24 cm
So, let's equate them and find radius (r) :
[tex]\qquad \tt \dashrightarrow \:2 \pi r = 24[/tex]
[tex]\qquad \tt \dashrightarrow \:r = \dfrac{ 24}{2 \pi}[/tex]
[tex]\qquad \tt \dashrightarrow \:r = \dfrac{ 12}{3.14}[/tex]
[tex]\qquad \tt \dashrightarrow \:r = 3.82 \: \: cm[/tex]
So, we got the radius here. now let's equate it with expression in terms of x to find value of x
[tex]\qquad \tt \dashrightarrow \: \sqrt{x + 2} = 3.82[/tex]
[tex]\qquad \tt \dashrightarrow \:{x + 2} = (3.82) {}^{2} [/tex]
[tex]\qquad \tt \dashrightarrow \:{x } \approx 14.59 - 2[/tex]
[tex]\qquad \tt \dashrightarrow \:{x } \approx 12.59 \: \: cm[/tex]