Respuesta :
equation: (x + 14)² + (y + 5)² = 149
Given:
- centre : (-14,-5)
- point (-7,5)
=============
Formula's:
- (x-h)² + (y-k)² = r²
- centre : (h, k)
- radius : r
- distance between points : [tex]\sf \sqrt{(x2-x1)^2 + (y2-y1)^2}[/tex]
Find the radius:
[tex]\rightarrow \sf \sqrt{(-7-(-14))^2 + (5-(-5))^2}[/tex]
[tex]\sf \rightarrow \sqrt{\left(-7+14\right)^2+\left(5+5\right)^2}[/tex]
[tex]\sf \rightarrow \sqrt{149}[/tex]
Equation of circle:
- (x-h)² + (y-k)² = r²
- (x-(-14))² + (y-(-5))² = (√149)²
- (x + 14)² + (y + 5)² = 149
Graph for clarification:

Answer:
[tex]\sf (x+14)^2+(y+5)^2=149[/tex]
Step-by-step explanation:
Standard equation of a circle: [tex]\sf (x-a)^2+(y-b)^2=r^2[/tex]
(where (a, b) is the center and r is the radius of the circle)
Substitute the given center (-14, -5) into the equation:
[tex]\sf \implies (x-(-14))^2+(y-(-5))^2=r^2[/tex]
[tex]\sf \implies (x+14)^2+(y+5)^2=r^2[/tex]
Now substitute the point (-7, 5) into the equation to find r²:
[tex]\sf \implies ((-7)+14)^2+(5+5)^2=r^2[/tex]
[tex]\sf \implies (7)^2+(10)^2=r^2[/tex]
[tex]\sf \implies 149=r^2[/tex]
Final equation:
[tex]\sf (x+14)^2+(y+5)^2=149[/tex]