Problem 1: Verify whether these two functions are inverses: (x + 5) f(x) = (2x + 1) and g(x) = (5 - x) (2x - 1) What is g(x))? Use your keyboard and the keypad to enter your answer. Then click Done

Respuesta :

g(f(x)) = x

What is inverse function?

An inverse function is defined as a function, which can reverse into another function.

[tex]f(x)= \frac{(x + 5)}{(2x + 1)}[/tex]

[tex]g(x)= \frac{(5 - x)}{(2x - 1)}[/tex]

 [tex]g(f(x))=g( \frac{(x+5)}{(2x +1)})[/tex]

Substitute the value of f(x),

[tex]g(f(x))= \frac{(5 - \frac{(x + 5)}{(2x + 1)})}{(2 \frac{(x + 5)}{(2x + 1)} - 1)}[/tex]

[tex]g(f(x))= \frac{\frac{10x+5-x-5}{2x+1} }{ \frac{2x+10-2x-1}{2x+1}}[/tex]

[tex]g(f(x)) = \frac{9x}{9}[/tex]

g(f(x)) = x

Hence, g(f(x)) = x

Learn more about inverse function

https://brainly.com/question/2541698

#SPJ2