Answer:
Step-by-step explanation:
The length of the third side can be determined using pythogoras theorem. Keep in mind that pythogoras theorem can only be used when finding the missing side length of a right triangle.
[tex]\text{Pythagoras theorem: (Longest side})^{2} = (\text{Leg of right triangle}_{1} ) ^{2} + (\text{Leg of right triangle}_{2} )^{2}[/tex]
In this triangle, we are given that:
- The longest side of the triangle is measuring 7 units.
- A leg of the triangle is measuring 5 units
Substitute the measures into the pythogoras theorem:
[tex](7})^{2} = (5 ) ^{2} + (\text{Leg of right triangle}_{2} )^{2}[/tex]
Simplify both sides of the equation:
[tex]\rightarrowtail (7 \times 7}) = (5 \times 5) + (\text{Leg of right triangle}_{2} )^{2}[/tex]
[tex]\rightarrowtail49 = 25 + (\text{Leg of right triangle}_{2} )^{2}[/tex]
Subtract 25 both sides:
[tex]\rightarrowtail49 - 25 = 25 - 25 +(\text{Leg of right triangle}_{2} )^{2}[/tex]
[tex]\rightarrowtail24 = (\text{Leg of right triangle}_{2} )^{2}[/tex]
Square root both sides and simplify:
[tex]\rightarrowtail\sqrt{24} = \sqrt{(\text{Leg of right triangle}_{2} )^{2}}[/tex]
[tex]\rightarrowtail\sqrt{3 \times 2\times 2 \times 2} = \sqrt{(\text{Leg of right triangle}_{2} )^{2}}[/tex]
[tex]\rightarrowtail2\sqrt{3 \tim \times 2} = \text{Leg of right triangle}_{2}[/tex]
[tex]\rightarrowtail\boxed{2\sqrt{6} \ \text{units} = \text{Leg of right triangle}_{2}}[/tex]