Find the length of the third side. If necessary, write in simplest radical form.

IMAGE DOWN BELOW!

SOMEONE PLEASE HELP ME!! ILL GIVE YOU BRAINLIST ANSWER

Find the length of the third side If necessary write in simplest radical form IMAGE DOWN BELOW SOMEONE PLEASE HELP ME ILL GIVE YOU BRAINLIST ANSWER class=

Respuesta :

Answer:

2√6

using pythagoras theorem:

a² + b² = c²

  • 5² + b² = 7²
  • 25 + b² = 49
  • b² = 49 - 25
  • b² = 24
  • b = √24
  • b = 2√6

Answer:

  • 2√6 units

Step-by-step explanation:

The length of the third side can be determined using pythogoras theorem. Keep in mind that pythogoras theorem can only be used when finding the missing side length of a right triangle.

[tex]\text{Pythagoras theorem: (Longest side})^{2} = (\text{Leg of right triangle}_{1} ) ^{2} + (\text{Leg of right triangle}_{2} )^{2}[/tex]

In this triangle, we are given that:

  • The longest side of the triangle is measuring 7 units.
  • A leg of the triangle is measuring 5 units

Substitute the measures into the pythogoras theorem:

[tex](7})^{2} = (5 ) ^{2} + (\text{Leg of right triangle}_{2} )^{2}[/tex]

Simplify both sides of the equation:

[tex]\rightarrowtail (7 \times 7}) = (5 \times 5) + (\text{Leg of right triangle}_{2} )^{2}[/tex]

[tex]\rightarrowtail49 = 25 + (\text{Leg of right triangle}_{2} )^{2}[/tex]

Subtract 25 both sides:

[tex]\rightarrowtail49 - 25 = 25 - 25 +(\text{Leg of right triangle}_{2} )^{2}[/tex]

[tex]\rightarrowtail24 = (\text{Leg of right triangle}_{2} )^{2}[/tex]

Square root both sides and simplify:

[tex]\rightarrowtail\sqrt{24} = \sqrt{(\text{Leg of right triangle}_{2} )^{2}}[/tex]

[tex]\rightarrowtail\sqrt{3 \times 2\times 2 \times 2} = \sqrt{(\text{Leg of right triangle}_{2} )^{2}}[/tex]

[tex]\rightarrowtail2\sqrt{3 \tim \times 2} = \text{Leg of right triangle}_{2}[/tex]

[tex]\rightarrowtail\boxed{2\sqrt{6} \ \text{units} = \text{Leg of right triangle}_{2}}[/tex]