Find x.
Round to the nearest tenth:
31°
у
X
400 ft
x = [ ? ]ft

Answer:
First find the inner angle:
using sine rule:
[tex]\sf sin(x)= \dfrac{opposite}{hypotensue}[/tex]
[tex]\hookrightarrow \sf sin(59)= \dfrac{400}{x}[/tex]
[tex]\hookrightarrow \sf x = \dfrac{400}{sin(59)}[/tex]
[tex]\hookrightarrow \sf x = 466.6533[/tex]
[tex]\hookrightarrow \sf x = 466.7[/tex] ( rounded to nearest tenth )
====================================
using tan rule:
[tex]\sf tan(x)= \dfrac{opposite}{adjacent}[/tex]
[tex]\hookrightarrow \sf tan(59)= \dfrac{400}{y}[/tex]
[tex]\hookrightarrow \sf y= \dfrac{400}{ tan(59)}[/tex]
[tex]\hookrightarrow \sf y= 240.344[/tex]
[tex]\hookrightarrow \sf y= 240.3[/tex]
Answer:
y = 466.7 ft (nearest tenth)
Step-by-step explanation:
Using the Alternate Interior Angle Theorem
the angle inside the triangle that is opposite the side [tex]y[/tex] is 31°
Using the cos trig ratio:
[tex]\sf cos(\theta)=\dfrac{A}{H}[/tex]
where:
Given:
Substitute given values and solve for x:
[tex]\sf \implies cos(31)=\dfrac{400}{x}[/tex]
[tex]\sf \implies x=\dfrac{400}{cos(31)}[/tex]
[tex]\sf \implies x=466.7\:ft\:(nearest\:tenth)[/tex]