Respuesta :
Answer:
(0, 3)
Step-by-step explanation:
1. Find the slope:
[tex]\frac{y_{2} -y_{1} }{x_{2}-x_{1} } =\frac{0-(-3)}{-4-(-8)}\\ \\=\frac{3}{4}[/tex]
2. Calculate the y-intercept using a given point:
(-8, -3)
-3 = [tex]\frac{3}{4} (-8)[/tex] + b
-3 = -6 + b
-3+6 = -6+6 + b
3 = b
3. Write in slope intercept form:
[tex]y= \frac{3}{4} x+3[/tex]
Therefore, the y-intercept is 3.
The graph for this table is shown below.
hope this helps :)

Answer:
y-intercept = (0, 3)
Step-by-step explanation:
This table models a linear function:
[tex]\begin{tabular}{| c | c |}\cline{1-2} $x$ & $y$\\\cline{1-2} -8 & -3\\\cline{1-2} -4 & 0\\\cline{1-2} 4 & 6\\\cline{1-2} 8 & 9\\\cline{1-2} \end{tabular}[/tex]
Find the slope:
[tex]\sf slope\:(m)=\dfrac{change\:in\:y}{change\:in\:x}=\dfrac{9-6}{8-4}=\dfrac{3}{4}[/tex]
Use one of the points (-4, 0) and the found slope to form a linear equation using the point-slope formula:
[tex]\begin{aligned}y-y_1 & =m(x-x_1)\\\\\implies y-0 & =\dfrac{3}{4}(x-(-4)\\\\y & =\dfrac{3}{4}x+3\end{aligned}[/tex]
The y-intercept is when x = 0:
[tex]\implies y=\dfrac{3}{4}(0)+3=3[/tex]
Therefore, the y-intercept is (0, 3)