Respuesta :
Answer:
Part A
Given equation:
9(3x – 16) + 15 = 6x – 24
Expand the brackets:
⇒ 9(3x) + 9(-16) + 15 = 6x – 24
⇒ 27x - 144 + 15 = 6x – 24
Combine like terms:
⇒ 27x - 129 = 6x – 24
Subtract 6x from both sides:
⇒ 27x - 129 - 6x = 6x – 24 - 6x
⇒ 21x - 129 = -24
Add 129 to both sides:
⇒ 21x - 129 + 129 = -24 + 129
⇒ 21x = 105
Divide both sides by 21:
⇒ 21x ÷ 21 = 105 ÷ 21
⇒ x = 5
Part B
x = 5
Answer:
x = 5
Step-by-step explanation:
Hello!
Step 1: Expand the left side by distributing
9(3x - 16) + 15 = 6x - 24
27x - 144 + 15 = 6x - 24
Step 2: Simplify the left side
27x - 144 + 15 = 6x - 24
27x - 129 = 6x - 24
Step 3: Subtract 6x from the both sides (collect like terms)
27x - 129 = 6x - 24
21x - 129 = -24
Step 4: Add 129 to both sides to isolate 21x (collect like terms)
21x - 129 = -24
21x = 105
Step 5: Divide both sides by 21 to isolate x
21x = 105
x = 5
What value of x makes this equation true? 5.