Respuesta :
Answer:
[tex]x=-6+2\sqrt{7}[/tex]
[tex]x=-6-2\sqrt{7}[/tex]
Step-by-step explanation:
Completing the square
when [tex]ax^2+bx+c=0[/tex]
Given equation:
[tex]x^2+12x+8=0[/tex]
Subtract 8 from both sides:
[tex]\implies x^2+12x=-8[/tex]
Add the square of half the coefficient of [tex]x[/tex] to both sides:
[tex](\frac{b}{2})^2=(\frac{12}{2})^2=36[/tex]
[tex]\implies x^2+12x+36=-8+36[/tex]
Factor the left side and simplify the right side:
[tex]\implies (x+6)^2=28[/tex]
Subtract 28 from both sides:
[tex]\implies (x+6)^2-28=0[/tex]
Solve
[tex]\implies (x+6)^2=28[/tex]
[tex]\implies x+6=\pm\sqrt{28}[/tex]
[tex]\implies x+6=\pm\sqrt{4 \cdot 7}[/tex]
[tex]\implies x+6=\pm\sqrt{4}\sqrt{7}[/tex]
[tex]\implies x+6=\pm2\sqrt{7}[/tex]
[tex]\implies x=-6\pm2\sqrt{7}[/tex]
- x²+12x+8=0
- x²+12x=-8
Multiply 4a
- 4(x²+12x)=-32
- 4x²+48x=-32
- (2x)²+2(2x)(12)=-32
Add b²
- (2x)²+2(2x)(12)+12²=12²-32
- (2x+12)²=144-32
- (2x+12)²=112
- 2x+12=±√112
- 2(x+6)=2√28
- x+6=±√28
- x=-6±2√7