Respuesta :
Answer:
- CSA of the cylinder = 440 sq. cm
- Volume of the cylinder = 1540 cu. cm
[tex]\\[/tex]
Step-by-step explanation:
Given:
- Radius of the cylinder = 7 cm
- Height of the cylinder = 10 cm
[tex]\\[/tex]
To Find:
- Curved surface area
- Volume
[tex]\\[/tex]
Solution:
[tex]\\[/tex]
Using formula:
[tex] \dashrightarrow \: \: { \underline{ \boxed{ \pmb{ \sf{ \purple{CSA \: of \: cylinder = 2\pi rh}}}}}} \: \star \\ \\ [/tex]
Substituting the required values:
[tex]\\[/tex]
[tex] \dashrightarrow \: \: \sf CSA {(cylinder)} = 2 \times \dfrac{22}{7} \times 7 \times 10 \\ \\ \\
\dashrightarrow \: \: \sf CSA {(cylinder)} = 2 \times 22 \times 10 \\ \\ \\ \dashrightarrow \: \: \sf CSA {(cylinder)} = 44 \times 10 \\ \\ \\ \dashrightarrow \: \: \sf CSA {(cylinder)} = 440 \: {cm}^{2} \\ \\ \\ [/tex]
Now,
[tex] \dashrightarrow \: \: { \underline{ \boxed{ \pmb{ \sf{ \purple{Volume {(cylinder)}= \pi {r}^{2} h}}}}}} \: \star \\ \\ \\ [/tex]
Substituting the required values,
[tex]\\[/tex]
[tex] \dashrightarrow \: \: \sf Volume {(cylinder)}= \dfrac{22}{7} \times {(7)}^{2} \times 10 \\ \\ \\ \dashrightarrow \: \: \sf Volume {(cylinder)}= \frac{22}{7} \times 49 \times 10 \\ \\ \\ \dashrightarrow \: \: \sf Volume {(cylinder)}= 22 \times 7 \times 10 \\ \\ \\ \dashrightarrow \: \: \sf Volume {(cylinder)}= 1540 {cm}^{3} \\ \\ \\ [/tex]
Hence,
- CSA of the cylinder = 440 sq. cm
- Volume of the cylinder = 1540 cu. cm
Step-by-step explanation:
CSA of cylinder 440 cm sq.
Volume 1540 cm cube.