Respuesta :

Answer:

12 and 6

Step-by-step explanation:

Let the numbers be x and y

Sum of two numbers is 18.

 ⇒ x + y = 18  ----------------(II)

[tex]\sf \text{Reciprocal of x = $\dfrac{1}{x}$}\\\\ \text{Reciprocal of y =$\dfrac{1}{y}$}[/tex]

Sum of reciprocals is 1/4

       [tex]\sf \dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\\ \dfrac{1*y}{x*y}+\dfrac{1*x}{y*x}=\dfrac{1}{4}\\\\\dfrac{y}{xy}+\dfrac{x}{xy}=\dfrac{1}{4}\\[/tex]

            [tex]\sf \dfrac{x +y}{xy}=\dfrac{1}{4}[/tex]

Plugin (x +y = 18)

               [tex]\dfrac{18}{xy}=\dfrac{1}{4}\\\\[/tex]

Cross multiply,

           18*4   = 1*(xy)

              xy   = 72

                 [tex]x = \dfrac{72}{y}[/tex]

Substitute x value in equation (I)

            [tex]\dfrac{72}{y}+y=18\\\\\text{Multiply the entire equation by y}\\\\\\ 72 + y^2=18y\\[/tex]

        y² - 18y + 72 = 0

 y² - 12y - 6y + 72 = 0

y(y -12) - 6(y - 12) = 0

       (y - 12)(y -6 ) = 0

y - 12 = 0              ; y - 6 = 0

    y = 12              ; y = 6

The numbers are 12 , 6

The answer is 12,6 hope it help