Answer:
[tex]\textsf{i)} \quad \textsf{Tangent PQ}: \: y = 3x - 5[/tex]
[tex]\textsf{Normal PR}: \: y=-\dfrac{1}{3}x+5[/tex]
[tex]\textsf{ii)} \quad \sf Area=\dfrac{80}{3} \:\: units^2[/tex]
Step-by-step explanation:
Given:
- [tex]y=\dfrac{1}{16}(3x-1)^2[/tex]
Part (i)
The derivative of the function f(x) gives the gradient of the tangent to the graph of y = f(x) at the point (x, y).
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If $y=f(u)$ and $u=g(x)$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=\dfrac{\text{d}y}{\text{d}u}\times \dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}[/tex]
Differentiate the function of the curve by using the chain rule.
[tex]\textsf{Let }\:y=\dfrac{1}{16}u^2 \: \textsf{ where }\:u=3x-1[/tex]
Differentiate y and u separately:
[tex]\implies \dfrac{\text{d}y}{\text{d}u}=\dfrac{2}{16}u=\dfrac{1}{8}u[/tex]
[tex]\implies \dfrac{\text{d}u}{\text{d}x}=3[/tex]
Put everything back into the chain rule formula:
[tex]\implies \dfrac{\text{d}y}{\text{d}x}=\dfrac{1}{8}u \times 3=\dfrac{3}{8}u=\dfrac{3}{8}(3x-1)[/tex]
To find the gradient of the curve at point P, substitute x = 3 into the differentiated function:
[tex]\textsf{When }x=3, \quad \dfrac{\text{d}y}{\text{d}x}=\dfrac{3}{8}(3(3)-1)=3[/tex]
So the gradient of the tangent at P is 3.
The gradient of the normal is the negative reciprocal of the gradient of the tangent, so the gradient of the normal at P is -¹/₃ .
Substitute the found gradients and the coordinates of the P into the point-slope form of linear equation to find the equation of the tangent PQ and the normal PR:
Equation of the tangent PQ
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-4=3(x-3)[/tex]
[tex]\implies y=3x-5[/tex]
Equation of the normal PR
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-4=-\dfrac{1}{3}(x-3)[/tex]
[tex]\implies y=-\dfrac{1}{3}x+5[/tex]
Part (ii)
To find the coordinates of point Q, set the equation of the tangent PQ to zero and solve for x:
[tex]\implies 3x-5=0[/tex]
[tex]\implies x=\dfrac{5}{3}[/tex]
Therefore, Q = (⁵/₃, 0).
To find the coordinates of point R, set the equation of the normal PR to zero and solve for x:
[tex]\implies -\dfrac{1}{3}x+5=0[/tex]
[tex]\implies x=15[/tex]
Therefore, R = (15, 0).
Coordinates of vector QP:
[tex]\begin{aligned}\overrightarrow{\sf QP} & =\overrightarrow{\sf QO}+\overrightarrow{\sf OP}\\ & = \overrightarrow{\sf OP}-\overrightarrow{\sf OQ}\\ & = \sf (3,4)-\left(\dfrac{5}{3},0\right)\\ & = \sf \left(\dfrac{4}{3},4\right)\end{aligned}[/tex]
Coordinates of vector QR:
[tex]\begin{aligned}\overrightarrow{\sf QR} & =\overrightarrow{\sf QO}+\overrightarrow{\sf OR}\\ & = \overrightarrow{\sf OR}-\overrightarrow{\sf OQ}\\ & = \sf (15,0)-\left(\dfrac{5}{3},0\right)\\ & = \sf \left(\dfrac{40}{3},0\right)\end{aligned}[/tex]
Area of triangle PQR
[tex]\begin{aligned}\sf Area\:of\:\triangle PQR & = \sf \dfrac{1}{2} \left| \overrightarrow{\sf QP} \cdot \overrightarrow{\sf QR}\right|\\\\ & = \sf \dfrac{1}{2} \left| (x_{QP} \cdot y_{QR})-(x_{QR} \cdot y_{QP}) \right|\\\\ & = \sf \dfrac{1}{2}\left| \left(\dfrac{4}{3} \cdot 0\right)-\left(\dfrac{40}{3} \cdot 4 \right)\right|\\\\ & =\sf \dfrac{80}{3}\:\:units^2\end{aligned}[/tex]
Learn more about differentiation here:
https://brainly.com/question/27926244