Respuesta :

Answer:

[tex]\sf \tan(A) & =\dfrac{9\sqrt{22}}{44}[/tex]

Step-by-step explanation:

If angle C is the right angle, then side c is the hypotenuse.

Use Pythagoras' Theorem [tex]a^2+b^2=c^2[/tex] to find the length of side a:

Given:

  • b = 2√22
  • c = 13

[tex]\implies a^2+(2 \sqrt{22})^2=13^2[/tex]

[tex]\implies a^2+88=169[/tex]

[tex]\implies a^2=81[/tex]

[tex]\implies a=\sqrt{81}[/tex]

[tex]\implies a=9[/tex]

Tan Trig Ratio

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Given:

  • [tex]\theta[/tex] = A
  • O = side opposite angle A = a = 9
  • A = side adjacent angle A = b = 2√22

[tex]\begin{aligned}\implies \sf \tan(A) & =\dfrac{9}{2\sqrt{22}}\\\\ & =\dfrac{9}{2\sqrt{22}} \times \dfrac{\sqrt{22}}{\sqrt{22}}\\\\ & = \dfrac{9\sqrt{22}}{44} \end{aligned}[/tex]

Ver imagen semsee45

Answer:

[tex]\boxed{ \sf \bold{tanA = \frac{9}{2\sqrt{22} } }}[/tex]

Given:

  • c = 13
  • b = 2√22

=============

Formula's:

  • tan(x) = opposite/adjacent     :  tane rule
  • a² + b² = c²     :  Pythagoras Theorem

=============

To find Tan A, first find opposite side of angle A and adjacent side which is already given of 2√22

=============

Opposite side:

  • (2√22)² + b² = 13²
  • b² = 169 - 88
  • b² = 81
  • b = √81
  • b = 9

Now find tan A:

tanA = 9/2√22

Ver imagen fieryanswererft