Respuesta :

[tex](\stackrel{x_1}{4}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{-2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-2}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{1}-\underset{x_1}{4}}}\implies \cfrac{-6}{-3}\implies 2 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{4}=\stackrel{m}{2}(x-\stackrel{x_1}{4}) \\\\\\ y-4=2x-8\implies y=2x-4[/tex]

Step-by-step explanation:

(4, 4) and (1, -2).

(x1,y1) and (x2,y2)

slope=(y2-y1/x2-x1)

m= -2-4/1-4

m=2

slopeintercept form

y=2x-4

point slope form

y-4=2(x-4)