Respuesta :

Answer:

B. 4x + 8

Step-by-step explanation:

Hello!

Using the given formula: [tex]A = \frac12h(b_1 + b_2)[/tex], we can simply plug in the values.

Solve for the area:

  • [tex]A = \frac12h(b_1 + b_2)[/tex]
  • [tex]A = \frac12(4)(x - 3 + x + 7)[/tex]
  • [tex]A = 2(2x +4)[/tex]
  • [tex]A = 4x + 8[/tex]

The answer is Option B. 4x + 8

Answer:

Option B)

Step-by-step explanation:

We already know that:

  • Given height of trapezoid: 4 units
  • Given base(s) of trapezoid: (x + 7) and (x - 3) units

Formula to determine the area of a trapezoid:

[tex]\boxed{\large\text{Area of trapezoid formula:}\ \dfrac{(\text{Base}_{1} + \text{Base}_{2})\text{(h)}}{2}}[/tex]

Substitute the base(s) and the height in the formula;

     [tex]\bullet \implies\text{Area of trapezoid} = \dfrac{[(x - 3) + (x + 7)]\text{(4)}}{2}}[/tex]

Simplifiy the distributive property in the numerator;

     [tex]\bullet \implies\text{Area of trapezoid} = \dfrac{[4(x - 3) + 4(x + 7)]}{2}}[/tex]

     [tex]\bullet \implies\text{Area of trapezoid} = \dfrac{[4x - 12 + 4x + 28]}{2}}[/tex]

     [tex]\bullet \implies\text{Area of trapezoid} = \dfrac{8x + 16}{2}}[/tex]

Distribute the denominators and simplify;

     [tex]\bullet \implies\text{Area of trapezoid} = \dfrac{8x}{2}} + \dfrac{16}{2}[/tex]

     [tex]\bullet \implies\boxed{\text{Area of trapezoid} = 4x + 8 \ \text{units}^{2}}[/tex]

The area of trapezoid stated above, matches with option B.                      

Therefore, Option B is correct.