Answer:
[tex]m\widehat{KL}=115\degree[/tex]
Step-by-step explanation:
- Chords MK and LF intersect each other at point J.
- By intersecting chords theorem, we have.
- [tex]m\angle KJL =\frac{1}{2}(m\widehat {MF} +m\widehat{KL})[/tex]
- [tex]\implies 85\degree =\frac{1}{2}(4x+11-6+11x)\degree[/tex]
- [tex]\implies 2(85\degree )=(15x+5)\degree[/tex]
- [tex]\implies 170\degree=(15x+5)\degree[/tex]
- [tex]\implies 170=15x+5[/tex]
- [tex]\implies 170-5=15x[/tex]
- [tex]\implies 165=15x[/tex]
- [tex]\implies \frac{165}{15}=x[/tex]
- [tex]m\widehat{KL}=(-6+11x)[/tex]
- [tex]\implies m\widehat{KL}=(-6+11*11)[/tex]
- [tex]\implies m\widehat{KL}=(-6+121)[/tex]
- [tex]\implies m\widehat{KL}=115\degree[/tex]