Respuesta :
Answer:
- Area of the circle is 254.34 yd²
Step-by-step explanation:
Given:
- Diameter of circle = 18 yd
- π = 3.14
To Find:
- Area of circle.
Solution:
- Diameter = 18 yd
- Radius = 18/2 = 9 yd
We know that,
[tex] \: \: \: \: \dashrightarrow \: \: \: \: \: {\underline{\boxed{\sf{Area \: of \: circle = \pi r^2}}}} \\ \\[/tex]
Substituting the required values,
[tex]\\[/tex]
[tex] \: \: \: \: \dashrightarrow \: \: \: \: \: \sf Area_{(circle)} = 3.14 \times {(9)}^{2} \\ \\ [/tex]
[tex] \: \: \: \: \dashrightarrow \: \: \: \: \: \sf Area_{(circle)} = 3.14 \times 81 \\ \\ [/tex]
[tex] \: \: \: \: \dashrightarrow { \: \: \: \: \: \sf Area_{(circle)} = 254.34 \: {yd}^{2}} \\ \\ [/tex]
Hence,
- Area of the circle is 254.34 yd²
[tex]\sf\large \green{\underbrace{\red{Answer⋆}}}:[/tex]
[tex]\sf{\Large {Area \: of \: circle \: is \: 254.34 \: {yd}^{2}}}[/tex]
Step-by-step explanation:
[tex] \textsf{\blue{\underline{\large{To find :-}}}}[/tex]
The area of the circle
[tex] \textsf{\red{\underline{\large{Given :-}}}}[/tex]
Diameter (d) = 18 yd
radius (r) = ?
π = 3.14
[tex] \textsf{\orange{\underline{\underline{\huge{Solution :-}}}}}[/tex]
First we have to find radius
[tex] \sf \purple{radius = \frac{diameter}{2}} \\
\sf r = \frac{d}{2} \\
\sf r = \frac{18}{2} \\
\sf r = 9 \: yd [/tex]
With the help of radius we can find area
[tex] \sf \green{Area \: of \: circle = \pi {radius}^{2}} \\
\sf Area \: of \: circle = \pi {r}^{2} \\
\sf Area = 3.14 \times {9}^{2} \\
\sf Area = 3.14 \times 81 \\
\sf { \pink{ Area = 254.34 \: {yd}^{2}}}[/tex]