Respuesta :

Answer:

Arc length MK = 15.45 units (nearest hundredth)

Arc measure = 58.24°

Step-by-step explanation:

Calculate the measure of the angle KLN (as this equals m∠KLM which is the measure of arc MK)

ΔKNL is a right triangle, so we can use the cos trig ratio to find ∠KLM:

[tex]\sf \cos(\theta)=\dfrac{A}{H}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

  • [tex]\theta[/tex] = ∠KLM
  • A = LN = 8
  • H = KL = 15.2

[tex]\implies \sf \cos(KLM)=\dfrac{8}{15.2}[/tex]

[tex]\implies \sf \angle KLM=\cos^{-1}\left(\dfrac{8}{15.2}\right)[/tex]

[tex]\implies \sf \angle KLM=58.24313614^{\circ}[/tex]

Therefore, the measure of arc MK = 58.24° (nearest hundredth)

[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle)}[/tex]

Given:

  • r = 15.2
  • ∠KLM = 58.24313614°

[tex]\implies \textsf{Arc length MK}=2 \pi (15.2)\left(\dfrac{\sf \angle KLM}{360^{\circ}}\right)[/tex]

[tex]\implies \textsf{Arc length MK}=\sf 15.45132428\:units[/tex]