Respuesta :

Answer: [tex]11[/tex]

Step-by-step explanation:

the distance between [tex](5,-3)[/tex] and [tex](5,8)[/tex] is [tex]11[/tex], I know this because I Use the distance formula to determine the distance between two points.

the slope will be Undefined, and I know this because I use the slope formula to find the slope [tex]m[/tex].

To find the mid-point, Use the midpoint formula to find the midpoint of the line segment.

[tex](5, \frac{5}{2} )[/tex]

From the Equation Using Two Points I will need to use the slope formula and slope-intercept form [tex]y=mx+b[/tex] to find the equation.

[tex]x=5[/tex]

Ver imagen calderonj4588

Answer:

[tex]\Longrightarrow: \boxed{\sf{11}}[/tex]

Step-by-step explanation:

As with the slope formula, you must use the distance formula to determine the distance.

Use the slope formula.

Slope:

[tex]\Longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1} }[/tex]

  • y2=8
  • y1=(-3)
  • x2=5
  • x1=5

Use the distance formula.

Distance formula:

[tex]\Longrightarrow: \sf{\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}}[/tex]

[tex]\Longrightarrow: \sf{\sqrt{\left(5-5\right)^2+\left(8-\left(-3\right)\right)^2}}}[/tex]

Solve.

Use the order of operations.

PEMDAS stands for:

  • Parentheses
  • Exponents
  • Multiply
  • Divide
  • Add
  • Subtract

BODMAS stands for:

  • Brackets
  • Order
  • Divide
  • Multiply
  • Add
  • Subtract

[tex]\sf{\left(5-5\right)^2+\left(8-\left(-3\right)\right)}[/tex]

First, do parentheses.

(5-5)²

5-5=0

[tex]\sf{0^2+\left(8-\left(-3\right)\right)}[/tex]

(8-(-3))

=8+3

8+3=11

0²+11

Do exponents.

0²=0

0+11

Add.

0+11=11

[tex]\Longrightarrow: \boxed{\sf{11}}[/tex]

  • Therefore, the distance between (5,-3) and (5,8) is 11, which is our answer.