Respuesta :
Answer: [tex]11[/tex]
Step-by-step explanation:
the distance between [tex](5,-3)[/tex] and [tex](5,8)[/tex] is [tex]11[/tex], I know this because I Use the distance formula to determine the distance between two points.
the slope will be Undefined, and I know this because I use the slope formula to find the slope [tex]m[/tex].
To find the mid-point, Use the midpoint formula to find the midpoint of the line segment.
[tex](5, \frac{5}{2} )[/tex]
From the Equation Using Two Points I will need to use the slope formula and slope-intercept form [tex]y=mx+b[/tex] to find the equation.
[tex]x=5[/tex]

Answer:
[tex]\Longrightarrow: \boxed{\sf{11}}[/tex]
Step-by-step explanation:
As with the slope formula, you must use the distance formula to determine the distance.
Use the slope formula.
Slope:
[tex]\Longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1} }[/tex]
- y2=8
- y1=(-3)
- x2=5
- x1=5
Use the distance formula.
Distance formula:
[tex]\Longrightarrow: \sf{\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}}[/tex]
[tex]\Longrightarrow: \sf{\sqrt{\left(5-5\right)^2+\left(8-\left(-3\right)\right)^2}}}[/tex]
Solve.
Use the order of operations.
PEMDAS stands for:
- Parentheses
- Exponents
- Multiply
- Divide
- Add
- Subtract
BODMAS stands for:
- Brackets
- Order
- Divide
- Multiply
- Add
- Subtract
[tex]\sf{\left(5-5\right)^2+\left(8-\left(-3\right)\right)}[/tex]
First, do parentheses.
(5-5)²
5-5=0
[tex]\sf{0^2+\left(8-\left(-3\right)\right)}[/tex]
(8-(-3))
=8+3
8+3=11
0²+11
Do exponents.
0²=0
0+11
Add.
0+11=11
[tex]\Longrightarrow: \boxed{\sf{11}}[/tex]
- Therefore, the distance between (5,-3) and (5,8) is 11, which is our answer.